AD-A161 343

EXISTENCE OF RANDOM VARIABLES WITH VALUES IN THE DUAL OF A NUCLEAR SPACE (U) NORTH CAROLINA UNITY AT CHAPEL HILL DEPT OF STATISTICS S RANASWAMV SEP 85 TR-116

UNCLASSIFIED AFOSR-TR-85-8957 F49628-82-C-8089 F/G 12/1 NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AD-A161 343

CENTER FOR STOCHASTIC PROCESSES

Department of Statistics University of North Carolina Chapel Hill, North Carolina

EXISTENCE OF RANDOM VARIABLES WITH VALUES IN THE DUAL OF A NUCLEAR SPACE

by

S. Ramaswamy

TECHNICAL REPORT 116

September 1985

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE					
14. REPORT SECURITY CLASSIFICATION		1b. RESTRICTIVE MARKINGS			
UNCLASSIFIED 24 SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT			
12 SECURITY CLASSIFICATION AUTHORITY		S. DISTRIBUTION/AVAILABILITY OF REPORT			
26. DECLASSIFICATION/DOWNGRADING SCHEDULE		UNLIMITED for a constitution of east; distribution pullimited.			
4. PERFORMING ORGANIZATION REPORT NUMBER(S)		5. MONITORING ORGANIZATION REPORT NUMBER(S)			
Technical Report No. 116		AFOSR-TR- 3957			
6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL (If applicable)		7a. NAME OF MONITORING ORGANIZATION			
Center for Stochastic Processes		Air Force Office of Scientific Research			
6c. ADDRESS (City. State and ZIP Code) Dept. of Statistics	7b. ADDRESS (City, State and ZIP Code) Bolling Air Force Base				
University of North Carolina Chapel Hill, NC 27514	Washington, DC 20332				
8. NAME OF FUNDING/SPONSORING	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				
ORGANIZATION (If applicable) AFOSR		F49620-82-C-0009			
8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.					
Bolling Air Force Base Washington, DC 20332		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT NO.
		CHOSE	2304	A5	
"Existence of random variables with values in the dual of a nuclear space"					
12. PERSONAL AUTHOR(S) S. Ramaswamy					
13a. TYPE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT					
technical FROM 9/85 to 8/86 September 1985 7					
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)					
FIELD GROUP SUB. GR.					
19. ABSTRACT (Continue on reverse if necessary and identify by block number)					
The aim of this article is to apply some results of L. Schwartz's theory of					
radonifying maps to prove existence theorems for infinite dimensional valued random					
variables. As a consequence, we deduce some known results in this direction due to					
K. Ito, M. Perez-Abreu C., and T. Bojdecki and L.G. Gorostiza.					
		4.5			
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT		21. ABSTRACT SECURITY CLASSIFICATION			
UNCLASSIFIED/UNLIMITED 🗆 SAME AS RPT. 🗆 DTIC USERS 🗀		UNCLASSIFIED			
228. NAME OF RESPONSIBLE INDIVIDUAL		22b. TELEPHONE N		22c. OFFICE SYME	OL
Brian W. Woodruft Maj.	(202)767-5		AFOSR/	NM	
DO FORM 1472 02 ADD					

DD FORM 1472, 83 APR

EDITION OF 1 JAN 73 IS OBSOLETE.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

EXISTENCE OF RANDOM VARIABLES WITH VALUES IN THE DUAL OF A NUCLEAR SPACE

bу

S. Ramaswamy*

Abstract

The aim of this article is to apply some results of L. Schwartz's theory of radonifying maps to prove existence theorems for infinite dimensional valued random variables. As a consequence, we deduce some known results in this direction due to K. Ito, M. Perez-Abreu C., and T. Bojdecki and L.G. Gorostiza.

*This research supported by AFOSR Contract No. F49620 82 C 0009.

Acces 100

STIS CRAFE

THE TAB

Laramounced

Justifianton

By Distribution/
Availability Codes
Avail and/or
Dist Special

1. Preliminaries

Before we state and prove our main result, we need the following definitions and propositions from L. Schwartz [3], in the Chapter XIII, pp. 4 and 5.

<u>Definition 1</u>. Let (Ω, F, P) be a probability space. Let E be a locally convex Hausforff topological vector space and let E' be its dual. Let f be a linear random function from E' to L° (Ω, F, P) . f is said to be *decomposed* if \exists a measurable mapping φ from Ω to E such that for all $\xi \in E'$,

$$\xi \circ \varphi = f(\xi)$$
.

<u>Definition 2</u>. Let E and G be two Banach spaces. Let u be a continuous linear mapping of E in G. The map $t_u: G' \to E'$ is said to be p-decomposing $(0 \le p \le \infty)$ if for every linear random function $f: E' \to L^p(\Omega, F, P)$, the composite $f \circ t_u$ from G' to $L^p(\Omega, F, P)$ is decomposed by a mapping ϕ from Ω to G, $\phi \in L^p(\Omega, F, P; G)$ (with ess sup $||\phi|| < \infty$ in the case when $p = \infty$).

Proposition (XIII, 3;2). Let E,G be Banach spaces. Let u be a continuous linear mapping of E in G. Then u is p-radonifying (p > 0) if and only if $t_{...}: G' \to E'$ is p-decomposing.

We also need the fact that if T is a Hilbert-Schmidt operator from one Hilbert space to another, then it is p-radonifying for all p > 0. This is proved in Chapter XII, p. 2 in [3].

Existence theorem

We first prove a simple proposition.

Proposition 1. Let H_1 and H_2 be two Hilbert spaces and let T be a Hilbert-Schmidt operator from H_1 to H_2 . Then, T is p-decomposing for any p>0. Further, if f is a continuous linear random function from H_2 to $L^2(\Omega, \mathcal{F}, P)$, then the composite $f \circ T$ is decomposed by a mapping $X: \Omega \to H_1$ such that $X \in L^2(\Omega, \mathcal{F}, P; H_1)$ with

$$\int ||X(w)||^2 dP(w) \le ||f||^2 ||T||_2^2$$

where $||\mathbf{T}||_2$ is the Hilbert-Schmidt norm of T.

<u>Proof.</u> Since T is Hilbert-Schmidt, its transpose tT from H2 to H1 is also Hilbert-Schmidt. Hence, it is p-radonifying for any p>0. Hence, by the proposition (XIII, 3;2) mentioned above, its transpose ${}^t({}^tT)$ which is T is p-decomposing for any p>0. In particular it is 2-decomposing.

Let f be a continuous linear random function from H_2 to $L^2(\Omega, P)$. Then $f \circ T$ is decomposed by a mapping $X: \Omega \to H_1$ such that $\int ||X(w)||^2 dP(w) < \infty$.

Let $(\phi_i)_{i \in I}$ be an orthonormal basis for H_1 . Then, for all $w \in \Omega$,

$$||X(w)||^{2} = \sum_{i \in I} |\langle X(w), \phi_{i} \rangle|^{2} = \sup_{\substack{J \text{ finite} \\ J \subseteq I}} |\langle X(w), \phi_{i} \rangle|^{2}.$$

As the family $(\Sigma_{i \in J} | \langle X(\cdot), \phi_i \rangle |^2)_J$, $J \subset I$, J finite, of functions on Ω , is directed increasing, by Lebesgue's monotone convergence theorem, we have

$$\int ||X(w)||^{2} dP(w) = \sup_{\substack{J \text{ finite} \\ J \subset I}} \int_{i \in J} |\langle X(w), \phi_{i} \rangle|^{2} dP(w)$$

$$= \sup_{\substack{J \text{ finite} \\ J \subset I}} \sum_{i \in J} |\langle X(w), \phi_{i} \rangle|^{2} dP(w)$$

$$= \sum_{i \in I} |\langle X(w), \phi_{i} \rangle|^{2} dP(w).$$

As $f \circ T$ is decomposed by X,

$$\langle X(\cdot), \phi_i \rangle = f(T(\phi_i))$$
 for all $i \in I$.

Hence, for all $i \in I$,

$$\int |\langle X(w), \phi_{i} \rangle|^{2} dP(w) = \int |f(T(\phi_{i}))(w)|^{2} dP(w) \le ||f||^{2} ||T(\phi_{i})||^{2}.$$

Hence,

$$\sum_{\mathbf{i} \in \mathbf{I}} \left| \langle \mathbf{X}(\mathbf{w}), \phi_{\mathbf{i}} \rangle \right|^{2} dP(\mathbf{w}) \leq \left\| \mathbf{f} \right\|^{2} \sum_{\mathbf{i} \in \mathbf{I}} \left\| \mathbf{T}(\phi_{\mathbf{i}}) \right\|^{2} \leq \left\| \mathbf{f} \right\|^{2} \left\| \mathbf{T} \right\|_{2}^{2}.$$
 QED

Theorem 1. Let E be a nuclear space. Let E' be its dual. Let ϕ be a continuous positive-definite bilinear form on E. Then, there exists a probability space (Ω, \mathcal{F}, P) and a random variable $X: \Omega \to E'$ such that for all $x \in E$, the real-valued random variable X defined as X = $x \circ X$ is Gaussian with mean zero and the covariance kernel of the process $(X_X)_{x \in E}$ is ϕ .

<u>Proof.</u> Since ϕ is a positive-definite kernel on E, Ξ a real-valued Gaussian process $(X_{\mathbf{x}})_{\mathbf{x}\in E}$ on a probability space (Ω, F, P) with mean zero and with covariance kernel ϕ .

Since φ is bilinear, it is easy to see that the mapping f from E to $L^2(\Omega,F,P) \text{ taking x to } X_x \text{ is linear. Further, f is continuous, as } \varphi \text{ is continuous.}$ ous. Hence, E being nuclear, I neighborhoods U,V of (0), U,V both convex, balanced and closed, V \subset U, \hat{E}_V and \hat{E}_U both Hilbert spaces such that the canonical map $\varphi_{U,V}$ from \hat{E}_V to \hat{E}_U is Hilbert-Schmidt and such that f admits a factorization $\psi \circ \varphi_{U,V} \circ \varphi$

$$E \xrightarrow{\phi_{V}} \hat{E}_{V} \xrightarrow{\phi_{U,V}} \hat{E}_{U} \xrightarrow{\psi} L^{2}(\Omega,F,P)$$

where ψ is a continuous linear and $\varphi_{\mathbf{V}}$ is the canonical mapping.

As $\phi_{U,V}$ is Hilbert-Schmidt, by Proposition 1, it is 2-decomposing. Hence, $\psi \circ \phi_{U,V}$ is decomposed by a mapping Y from Ω to \hat{E}_V^i such that $Y \in L^2(\Omega,F,P:\hat{E}_V^i)$ with $\|Y\| \leq \|\psi\| \|\phi_{U,V}\|_2$.

Let X be the mapping from Ω to E' defined as $X = t_{\varphi_V} \circ Y$. Then, as Y decomposes $\psi \circ \varphi_{U,V}$, X decomposes $\psi \circ \varphi_{U,V} \circ \varphi_V$ which is f. Therefore, for all $x \in E$, we have $x \circ X = f(x) = X_x$ as elements of $L^{\circ}(\Omega, F, P)$.

Remark. As the image of E in $\stackrel{\wedge}{E_V}$ under the map ϕ_V is dense, the transpose map $^t\phi_V$ from $\stackrel{\wedge}{E_V}$ to E' is an injection. Hence, $\stackrel{\wedge}{E_V}$ can be thought of as a subspace of E' algebraically. Hence, the E'-valued random variable X of the above theorem is actually $\stackrel{\wedge}{E_V}$ -valued.

3. Application to known results

We now deduce theorem 3.1 of K. Itô in [2], concerning the existence of \mathbf{y}_{p+2}^{*} regularizations, from our proposition 1.

To deduce this, we have only to prove that the canonical inclusion from \mathbf{f}_{p+2} to \mathbf{f}_p is Hilbert-Schmidt with Hilbert-Schmidt norm $(\frac{\pi^2}{8})^{1/2}$. This is done as follows.

We consider \mathbf{g}_p as a sequence space consisting of all the sequences $\mathbf{a}=(a_n)_{n\in\mathbb{N}}$ such that $\sum_{n=1}^{\infty} |a_n|^2 (2n+1)^p < \infty$.

Let for all $n \in \mathbb{N}$, e^n be the sequence $(e_1^n, e_2^n, \ldots, e_i^n, \ldots)$ where $e_i^n = \delta_{ni}$. Then it is easily seen that the sequence $(f^n)_{n \in \mathbb{N}}$ of elements of \mathbf{y}_{p+2} where $f^n = \frac{e^n}{\|e^n\|_{p+2}}$ is an orthonormal basis for \mathbf{y}_{p+2} .

Now

$$\|f^n\|_p^2 = \frac{\|e_n\|_p^2}{\|e^n\|_{p+2}^2} = \frac{(2n+1)^p}{(2n+1)^{p+2}} = \frac{1}{(2n+1)^2}.$$

Hence

$$\sum_{n=1}^{\infty} \|f_n\|_p^2 = \sum_{n=1}^{\infty} \frac{1}{(2n+1)^2} = \frac{11^2}{8}.$$

This shows that the canonical inclusion from \mathbf{S}_{p+2} to \mathbf{S}_p is Hilbert-Schmidt with Hilbert-Schmidt norm $(\frac{\mathbb{I}^2}{8})^{1/2}$.

The theorem 1 and the remark following it give immediately as corollary the existence for all $t \in \mathbb{R}_+$ of a Φ '-valued random variable (actually a H_{-q} random variable, $q \in \mathbb{N}$, independent of t) which is proved in theorem 4.1.1 of [4]. There, Φ is a countably Hilbert nuclear space.

In the same way, the existence of a $S'(\mathbb{R}^d)$ -valued random variable W_t , for all $t \in \mathbb{R}_+$ in theorem 2.4 of [1] will follow provided we prove the continuity of the bilinear form $(\phi,\psi) \to \int_0^t \langle Q_u \phi, \psi \rangle du$ on $S(\mathbb{R}^d) \times S(\mathbb{R}^d)$. This follows from the following proposition.

<u>Proposition 2</u>. Let E,F be Frechet spaces. Let for all $u \in \mathbb{R}_+$, Q_u be a continuous linear map from E to F', F' being provided with the topology $\sigma(F',F)$. Let further, for all $(x,y) \in E \times F$, the function $u \to Q_u x, y > be cadlag$. Then for all $t \in \mathbb{R}_+$, the bilinear form

$$(x,y) \rightarrow \int_{0}^{t} \langle Q_{u}x, y \rangle du$$

is continuous on $E \times F$.

<u>Proof.</u> Since E and F are Frechet, to prove that a bilinear form is continuous, sufficient to prove that it is separately continuous. Therefore, we shall prove that for all $y \in F$, the linear mapping $x \to \int_0^t \langle Q_u x, y \rangle du$ is continuous on E. Analogously, it will follow that for all $x \in E$, the linear map $y \to \int_0^t \langle Q_u x, y \rangle du$ is continuous on F.

Let $y \in F$ be fixed. Let $(\mathbf{x}_n)_{n \in \mathbb{N}}$ be a sequence of elements of E such that $\mathbf{x}_n \to 0$. Then, for all u, $0 \le u \le t$, $(\mathbf{Q}_u \mathbf{x}_n, y) \to 0$. Hence the convergence of the integrals $\int_0^t (\mathbf{Q}_u \mathbf{x}_n, y) du$ to zero will follow from the dominated convergence theorem, in case we prove that

$$\sup_{n \in \mathbb{N}} \sup_{u} |\langle Q_{u,n}, y \rangle| < \infty.$$

Now for all u, $0 \le u \le t$, the linear map f_y^u from E to \mathbb{R} defined as $f_y^u(x) = \langle Q_u x, y \rangle$ is continuous. As for all (x,y), the real-valued function $u \to \langle Q_u x, y \rangle$ is cadlag, $\sup_u |\langle Q_u x, y \rangle| < \infty$. Hence, the family of linear maps $(f_y^u)_{0 \le u \le t}$ is $0 \le u \le t$ pointwise bounded. As E is Fréchet, it is barreled and hence by the theorem of Banach-Steinhaus, the family $(f_y^u)_{0 \le u \le t}$ is equicontinuous. Hence there exists a neighborhood U of (0) such that

$$\sup_{\mathbf{x}} \sup_{\mathbf{u}} |f_{\mathbf{y}}^{\mathbf{u}}(\mathbf{x})| \leq 1.$$

$$\mathbf{x} \in \mathbf{U} \quad 0 \leq \mathbf{u} \leq \mathbf{t}$$

That is

$$\begin{array}{ccc} \sup & \sup & \left| < Q_u x, y > \right| \le 1. \\ x & u \\ x \in U & 0 \le u \le t \end{array}$$

As $x_n \to 0$, \exists N such that $x_n \in U$ for all $n \ge N$. Hence $\sup_n \sup_u |<Q_u x_n, y>| < \infty.$ QED $n \in \mathbb{N} \quad 0 \le u \le t$

References

- 1. T. Bojdecki and L.G. Gorostiza: Langevin equations for S'-valued Gaussian processes and fluctuation limits of infinite particle systems, (Preprint, October 1984).
- 2. K. Ito: Distribution-valued processes arising from independent Brownian motions. (Math. Zeitschrift, 182, 1983, pp. 17-33).
- 3. L. Schwartz: Séminaire L-Schwartz. (1969-1970, Ecole Polytechnique, Paris).
- 4. V. M. Perez-Abreu C: Product stochastic measures, multiple stochastic integrals and their extensions to nuclear space valued processes, (Center for Stochastic Processes, Technical Report 107, June, 1985).

FILMED

1-86

DTIC